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Computational study of a weakly compressible mixing barrier
in low Prandtl number, strongly stratified fluids
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The effects of weak compressibility in the evolution of a fluid governed by the anelastic fluid
equations are explored computationally. The basis for this study is a careful determination of the role
which the anelastic divergence constraint plays in the evolution of a periodic array of interacting
vortices. Our numerical studies address a blocking phenomenon occurring in strongly stratified
flows with small Prandtl numbers. Computationally, we first document this blocking event which
strongly limits vertical mixing. This is achieved using idealized equations of fluid motion which do
not excite a density perturbation and exhibits that the presence of a strong density transition layer,
consistently modeled in the anelastic mass balance, may lead to a dramatic modification of vortex
interactions when compared with the incompressible analog. These modifications are evidenced by
the formation of a weakly compressible mixing barrier. We subsequently isolate this particular
blocking phenomenon as emerging in the limit of small Prandtl number through a sequence of
computational simulations of the complete anelastic fluid equations which retain a density
perturbation. It is shown that a sequential reduction of the Prandtl number yields much weaker
vertical mixing as evidenced by passive tracer statistics.20©3 American Institute of Physics.
[DOI: 10.1063/1.1602695

I. INTRODUCTION to understand how such a nontrivial anelastic mass constraint
may lead to modified dynamics and mixing properties rela-
The atmosphere is a compressible fluid admitting strongtive to the analogous incompressible system. Computational
vertical density variations over scales on the order of thestudies®~®have successfully demonstrated that anelastic ef-
atmospheric scale heigkapproximately 8 km in our atmo- fects are important in obtaininguantitativelycorrect simu-
spherg. Necessarily, this strong density variation, given bylations for typical large scale atmospheric density profiles,
some mean statg(z), must be consistently modelédzor  but have not elucidated precisely how variation in the density
quantified accuracy in the simulation of deep atmospheresrofile may alter the predictions.
one may utilize a generalization of the Boussinesq approxi- In the context of scalar mixing, McLaughlin and Forest
mation known as the anelastic fluid equatidns.These have demonstrated using methods of homogenized averaging
equations suppress sound waves but retain a nonsolenoidaht idealized(small scale, weakly compressiblanelastic
mass constrainy -(p(z)v) =0, and thereby offer a compro- flows involving a structured background density field yield
mise between the integration of the fully compressible equagquite different effective mixing properties than their incom-
tions (which require arextremelysmall time step and the  pressible counterpart. Specifically, the presence of a density
incompressible Boussinesq equatigwsich are invalid over  transition layer, such as that found in many boundary layers,
large vertical scales, and involve the global inversion of el-may lead to anisotropic effective diffusion arising in the form
liptic operators to reconstruct the pressurEhere is an ac- of local regions of trapped and focused contaminants near
cepted wisdom in the fluid dynamics community that thethe transition height. Motivated by this work, our purpose in
primary phenomenological details are captured within thehis article is to explore, through a careful computational
Boussinesq limit of the anelastic equations, and the maigtudy of an idealized set of anelastic fluid equations, new
purpose of retaining effects of density variation beyond thephenomena associated with structure modeled in the mean
standard Boussinesq approximation is purely for obtaining &tate density profile. To make such a determination, we will
more quantitatively accurate approximation. In the follow-first idealize to a model which focuses upon dynamic effects
ing, we will present a model study probing the extent todirectly attributable to the variable density mass balance.
which phenomenanay be the direct result of a variable den- To extract the precise dynamic effects originating from
sity mass balance such as that retained in the anelastic, @ mean state, we present a set of weakly compressible fluid
opposed to Boussinesq approximation. equations which retain a fixed, variable coefficient, pre-
Certainly, an interesting class of problems which has notcribed mean state density profile, and a consistent, non-
received great attention in the literature arises in an attemptivial mass balance, while neglecting all effects of buoy-
ancy. We present formal arguments to show that these
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of buoyancy. Examples of such scenarios may include lowdensity in the atmosphere admits strong variation, especially
Prandtl number fluids, flow in microgravity, or high Froude over large vertical scales, and consequently the Boussinesq
number flow: any driven flow in which the density perturba- equations do not offer a valid model to assess atmospheric
tion relaxes immediately to a nontrivial mean state densityphenomena. Nonetheless, the methodology employed to jus-
field which is maintained by external sourcing. The equadify these weakly compressible anelastic models is low Mach
tions we study model an inertially dominated system in thenumber theory, which generally necessitates the consider-
presence of strongaintaineddensity variation and conse- ation of a nontrivial fluid divergence constraiit®
quently, our study delineates phenomena associated with The mean state profile most typically considered is that
gravity waves and buoyancy instability from behavior arisingdesigned to account for the gravitational compression of an
through the anelastic mass balance. The system is also intédeal gas under its own weight. These profiles are commonly
esting as a variable-coefficient generalization of incompressstructureless exponentials, or power la@gpending upon
ible Navier—Stokes, with physically motivated coefficients. the precise thermodynamic assumptionehich vary slowly
Through computational simulation of these idealizedin the vertical. A scale for these profiles may be defined as
equations, we exhibit an intriguingpmpressible mixing bar- the height over which the associated hydrostatic pressure dis-
rier. This is established by a direct comparison between théribution drops from its surface value by a factoreoftypi-
dynamics of a purely incompressible, constant density fluictally around 8 km for the Earth’s atmosphetéHowever, it
flow with that of the anelastic equations for a velocity field should be observed that these profiles arise in the most el-
initialized as a periodic array of vortices. In the absence oementary situations, and do not in any way attempt to ac-
strong density transition such as associated with structurelessunt for the multitudes of other possible forces which may
(exponential or linegrmean state profiles, there is little phe- give rise to vertical atmospheric density variatiGguch as
nomenological difference between the vortex dynamics ofmechanisms producing stable boundary layers in the lower
the anelastic and incompressible models. However, the preatmosphere, as well as the radiative mechanisms responsible
ence of density transition as modeled in the mean state demvith the change of stability occurring around the tropo-
sity profile is seen to greatly change the dynamic interactiopause.
of these vortices as compared with the incompressible sys- To begin to assess potential phenomena associated with
tem, and leads to anixing barrier which effectively sepa- a structured mean state density profile, we consider the fol-
rates the fluid system into two distinct regimes. This behaviowing system of weakly compressible fluid equations gov-
ior is distinguished from the more typical blocking behavior erning the velocity fieldu:
occurring inlow Froude number flow in that gravity plays no

role in the dynamics studied here. To document the validity Ut (U-V)u=— 1 VP+ Lt Au+ KA V(V-u)
of the formal arguments we use to justify the simplified p(2) p(2) p(2) ’
model anelastic system, we reintroduce gravity and explore 1)

how the influence of a density perturbation modifies the dy-
namics. To this end, we simulate this complete anelastic sys-
tem for four different Prandtl number@®r=10,1,0.1,0.00  Here,u is the fluid velocity vectoru, A denote the respective
and exhibit how this particular blocking event arises in thefirst and second coefficients of viscosity, apfz) denotes
low Prandtl number limit. We remark that this phenomenonthe prescribed fixed density profile. These equations clearly
is similar in spirit with existing compressible passive scalarrepresent a modified Navier—Stokes system with a prescribed
studie$'° designed to assess the role of a structured densityariable coefficient.
profile in modifying vertical transport, however, the present A few remarks are in order regarding the model system
case involves fully nonlinear, dynamic simulations. (1) and(2). First, we do not describe the mechanisms which
give rise to the fixed density profile, but instead focus upon
phenomenological behavior arising from the incorporation of
structure into this mean state. Second, we do not at present
An important development in the study of atmosphericallow for a density perturbatiofsee the following for direct
fluid flow was the recognition that for deep convection, ef-comparison to dynamics which HoOf course, the density
fects of fluid compressibility should have some quantitativeperturbation comprises an essential ingredient for the evolu-
affect upon the dynamics; however, sound propagation coultion of the atmospheric system; however, our purpose here is
be neglected through the consideration of anelastic, “soundto isolate phenomena originating solely through structure in-
proof” fluid equations>® There have been numerous studiescorporated into the mean state density field as opposed to
proposing differing modeling approaches as to the precisthat associated with buoyancy stability and instability. These
form of the equation$3-%111%however the essential distinc- equations yield an analogous system to that of the ideal,
tion from the more familiar Boussinesq equations commorincompressible, constant-density, Navier—Stokes equations,
to all of these studies is the retention of some mean statenly for flow moving in the presence of a prescribed density
variable density profilep(z), varying in the vertical, and the profile. As such, this system may be viewed as governing the
associatedconsistentmass balanceV-(p(z)u)=0. If the transient behavior associated with a stirred, low Prauitl
mean state density is taken to be exactly a constant, the equilaigh Froude number fluid with maintained mean-state, ver-
tions reduce to the standard Boussinesq equations for thetical density structuréor essentially the same: fluid motion
mal convection in a thin layer. Of course, the mean statat low gravity). This weakly compressible system idealizes

V-(p(2)u)=0. @

II. ANELASTIC EQUATIONS
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FIG. 2. A diagram of the flow region.

p@)

0.95!
with a a constant parameter.
0.9 : : . ‘ Case 3:
0 1 2 3 4 5
z p YNz)=1+etant 8(z—z/2)], (5)

FIG. 1. The variable density profilep(z), for the structureles$4) and . .
structured(5) simulations. wherege, 8, z, are constantsZ, is the width of the channel,
e sets the amplitude of the density change across the layer,

and § sets the layer thickness.

fluid motion where the density of fluid parcels is assumed to Figure 1 documents two different density profiles for

immediately relax to the prescribed mean state profile. W(%:ases withx=0.02 in the exponential case, aed0.1, 5=4

will in the following below that(1) and (2) indeed capture or t\?\? trr]a?5|:|horl Iayehr.d nsity transitions ar mmon ;
phenomena to be distinguished and attributable to the am?—n c ir?ren na SL:;’] ehsriy ba Sndgrs ? € (;0 n((i) inoiﬁur
lastic mass balance Hw) presenting a formal scale analysis ences any atmospheric bou y layers a N

identifying the emergence of this system in the limit of smallmOCIInes n Iakes_ and oceans. We view such hyperb_ollc tan-
Prandtl number, an¢b) documenting that the blocking phe- gent density profiles as simplified cartoons representing such

nomena documented in the following desists for increasingsce?:irr'otsr']e computational simulations we adoot channel
Prandtl number through direct numerical comparison be'low boundar cF:)onditions That is we consFi)der O
tween a complete set of anelastic equations involving a y ) '

evolving density perturbation. Third, we emphasize that th dimensional motions vertically limited by two parallel fixed

phenomena observed in the simulations presented in the fo oundaries separated by the distaitie (see Fig. 3. We

lowing do not depend strongly upon the precise form of thedSsume no-slip boundary conditions on the vertical channel

viscous stress tensor. The numerical method we employ revyalls, af‘d a_pply periodic t_)oundary_ conditions in the hori-
ntal direction, over a horizontal widtM).

uires some viscosity to be stable, and as such, we utilize tHeY e ”
d y The initial conditions we study are selected to produce

consistent stress tensor associated with the compressible flor\]/% ntrivial vortex dvnamics. The velocity field is initialized as
in Egs. (1) and (2). y ' Y

To address phenomena associated with a structured me nstapdard .Ce””"’?“ f.IOV.QWh.iCh is an e>_<act solution of the
density field, we will considep(z) to be a given function of wo-dimensional inviscid, incompressible Euler equatjons

altitude that represents various forms of atmospheric stratifipIus a shear flow designed to ensure the no-slip conditions at

cation, the first corresponding to a structureless mean statIh.he top and bottom walls. We additionally normalize this

the second corresponding to a density transition layer. Wériitial field by the mean-state density profile to correctly re-

consider three cases here. Spect the nontrivial flow divergence constrafgj:

Case 1: _ cog2mXx)sin(2y)

p(z)=constant. (3) Uo(X,¥)= p(2) ’

Case 2: (xy)= sin(2wx)[1—cog2my)] ©
p YHz)=e?, (4) ooy p(2) '
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13
of this initial array of vortices will be changed relative to the L ) , (11
box size and to the scale of the background density profile.

We further comment that while such no-slip boundary con- vs

ditions may not be common for atmospheric systéespe- T ) ) (12
cially the top no-slip condition we utilize these boundary

conditions simply to initiate interesting vortex dynamics. The

bulk of the subsequent evolution which will yield the com- V= f:(gV)lB- (13

pressible mixing barrier occurs in the interior far from the . )
walls. Here, po is a referencdconstant density, and sa’ denotes

the usual kinematic viscosity of the fluid. Taking the Prandtl
I1l. NONDIMENSIONAL SCALINGS, AND THE LOW numbgr to_ pe the ratio of the kinematic ws_cosny e{mier-
PRANDTL NUMBER REDUCTION mal) diffusivity, Pr=v/k, the general anelastic equations pre-
sented above may be readily nondimensionalized yielding:
We will begin by considering the complete anelastic

By adjusting the channel widti\, and heightZ, , the scale ( 2
g

(Q,\le

fluid equations, with idealized thermodynamics, and assess P2~ P(L2), (14
the scales which give rise to the simplified zero gravity equa- gy 1 1 p .

tions outlined in Sec. Il. We will not pursue the more general ~ —- +(u-V)u=— D VP+ D Au-— ek (15
problem of beginning with the fully compressible Navier— o

Stokes equation, and the associated low Mach number theory V-+(p(z)u)=0, (16
necessary to obtain these starting equations which are a gen- , _ 13
eralization of the familiar Boussinesq equations; such calcu- ﬂi+(u-V) ' iA ' dp(2) Us+ i i

lations are outlined in the work of Almgréh To this end, we ot P =prmP dz po | g2 ¢

consider the following set of coupled nonlinear partial differ- a7
ential equations for unknownsy(P,p'), the respective fluid

. _ We note that with this nondimensionalization, allowing for a
flow vector, pressure, and density perturbation:

general, variable coefficient background density function,

u “w p'g. p(2), the usual Rayleigh number is not immediately ob-
E”L(U'V)U: - p(2) vpP+ p(2) Au- p(2) Z, () served, as in the familiar case with a linear background den-
sity profile.
V-(p(z)u)=0, (8) The idealized, simplified forntl) and(2) of the anelas-
9o’ dp(2) tic equations is now readily obtained in the limit of small
L-F(U‘V)p':KAp'— P u-z+ Q.. 9) Prandtl number, provided the condensational heating effects
at dz ‘ satisfy
Here, we have suppressed effects of second viscosity coeffi- 13
. oo . . . . 1/ v
cients for brevity in exposition. The full density field is _(_ Q.<1.
p(z2)+p’, and g denotes the gravitational acceleration. Po | g?

!_astlyﬁ we have plac_ed all effecth of C(_)”ndensfanonal heatln‘i’Nithout doubt, in situations such as dry convection this last
into the representative ternQ;. We will not focus upon inequality may be satisfied, however, for situations involving

important effects of (_:ondensatlonal h(_eatmg and other_ phasr‘?loist convection, the underlying physics must be accounted
change phenomena in the present article, but merely mclutcj]%

this term to document that under a suitable, well-define In the following sections, we will document a blocking

scaling, such effects mall_y b,e neg:lerc]:ted. We .note that th,e%e{/ent originating directly from the anelastic mass balance
quatlons aré a genera |za_t|on 0 _t € Boussm_esq equatl_o%d directly captured by the simplified evolution equations
which allow for motion against a fixed, but variable coeffi- (1) and(2). We accomplish this through a detailed compari-
cient background. In some forms of the anelastic equationg, betweeri1) and (2), the incompressible fluid equations,

this background is allowed to itself vary dynamically, and ;¢ e complete anelastic system, through a sequence of
can be made to satisfy reasonable thermodynamic equatio'%ﬁnulations in which the Prandtl number is varied
of state!! This is the most consistent and thermodynamically '

reasonable approach to such systems, however, for simplicity

in the present discussion, we assume that this backgrou

densitypvariability is a steady, fixed function of the vergticalqg/' THE NUMERICAL SCHEMES

coordinate. Our simulations utilize a modification of the projection
There are a Variety of different nondimenSionalizaﬁonSmethod introduced by Chorijﬁ_We remark that it is conve-

which may be employed, and we choose one with length anglient to change fluid flow variables to arrive at a modified

time scales given by the viscosity and gravity. To this endjncompressibldlow system which may be readily simulated

define length and time scales through utilizing Hodge decompositioff. To this end, introduce
M 1
y="—, (10) h==, u=hy, (18)
Po p
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wherev=(v,,v,)". Then Eqgs(1) and(2) become poration of an explicit, nonzero viscosity. We utilize a small,
nonzero viscosity in the simulations described in the follow-
U1U> . . . .
Vi+h(z)v-Vv+ h’(z)( 2 ) ing (precise values documented in Seq, ¥ind emphasize
v that the observed behavior is not directly a result of this
=—VP+uAh(z)V)+(N+pu) VIScosity. .
To solve the systeriv)—(9) numerically, we take advan-
h'(2) & tage of(18) and convert the system into the following form:
Ix
U1V
X v, : (19 v+ h(2)V-Vv+h' (2) 122} — —VP+uA(h(2)V)
h'(z) —+h"(2)v, U2
0z
0
V-v=0. (20) —p’gM. (27)
Let w=VXv be the vorticity. To gain some intuition _
. ) . : V-v=0, (28
about this system, suppose we ignore the viscosity term. Tak-
ing the curl of(19) and with the help 0f20), one finds pi +(hv-V)p'=kAp’'—hv-Vp(z)—p'V-hv, (29

dw , ) where the first two equations are solved in the same fashion
ﬁ*’h(v'v)“’:"Z(h vi—2h'w). (2D by the above-outlined projection method, and the third equa-
tion is solved using central difference discretization in spatial

In the limiting case of constant background density, this sysgimensions and Heun’s predictor-corrector method for time
tem reduces to the familiar two-dimensional vorticity trans'integration.
port equation. However, nonconstant background density g gain a statistical view of our numerical simulations,
profiles clearly involve a modified vorticity equation. In the \ye gject passive tracer particles at a certain time and let the
following, we will computationally examine the ensuing dif- yarticles move according to the local fluid velocity. Numeri-
ferences in evolution. . cally, to track the passive tracer particles, first we use inter-

We use the projection methddtogether with fast Fou-  olation to find the velocity field at the tracer location. Then

rier transform (FFT), to solve Egs.(19) and (20) where \ye yse a predictor-corrector method to integrate the velocity
A+u=0. The outline of our numerical methods to solve thefia|d to find the tracer location at the next time step.

weakly compressible equatioi9) and (20) in a semiperi- In all computations to following, the grid size is 128
odic region is as follows. x512. We have refined the mesh size to test the convergence
(1) Find U* which satisfies of our numerical results.

S —Vp"Y2=h(z)[(U-V)U]"

At V. SIMULATIONS, AND THE COMPRESSIBLE MIXING
Ah(2)(UM+U*) BARRIER: ZERO PRANDTL NUMBER EQUATIONS
)72
h(z) 2 : (22) We document phenomena directly attributable to the an-
] . e elastic mass constraint, in this section for the zero-gravity
(2) ProjectU* to obtainU"™"*: anelastic systeril) and(2), then in Sec. VI for the complete
UMtl=p(U*). (23)  anelastic system in the limit of small Prandtl numtter
» equivalently, large Froude number
More specifically, solve Specifically, we now explorphenomena associated with
A$=DU*, (24)  structure in the mean state density proﬂw_e compare .the
evolution of the three systemsase 1 the incompressible
and then set system[Egs. (1) and (2) with constant background density,
UNtl=U* —Gg, (25) p(z) =11]; then the anelastic system with two different back-

] ] ) ground density profilescase 2 a structureless exponential
whereD and G are discrete divergence and gradient operat4), andcase 3a transition layer5). (Movies of the numeri-

tors. cal simulations are available onlin¥
(3) Update the pressure gradient according to Figures 3—5 consist of columns 1, 2, 3 corresponding to
1 the dynamic evolution of the vorticity field for cases 1, 2, 3
Vp'ti2=ypn-Y2y H(I —P)U*. (26)  just discussed: the left column for the incompressible system,

the middle column for an exponential background dengity

In the spatial direction, a finite difference method is used. Tovith scale factora=0.02, and the right column for a transi-
solve the elliptic equatiof24) numerically, we use FFT with tion layer density profilg5) with parameterss=4, ¢=0.1.

the periodic boundary conditions fa@¥ in the horizontal di- See Fig. 1 for the relative comparison of these two density
rection and the Neumann boundary condition at the walls. Irprofiles. Each output time for the three cases is approxi-
the time direction, a predictor-corrector methddeun’s  mately the same. In all simulations, the dynamic viscosity is
method is employed onJ and Vp. We note that the con- set to 0.001, and the second viscosity is set to 0. We remark
vergence of this algorithm depends strongly upon the incorthat we explored nonzero second viscositfes values up to
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0.00) and did not observe significant differences in the out-the central vortex appears to be absorbed in the pricess
put. Unless otherwise noted, our channel dimensions argaroducing a new, same-signed vortex pair. This vortex pair
Z =5 M=1. spins, and exchanges fluid from the lower half of the com-
We first discuss théncompressible case, columnThe  putational domain to the uppéand vice versa It is pre-

initial conditions selected do not represent an exact steadgisely this fluid exchange and transport process that we ex-
solution of the inviscid incompressible Euler equations, bufplore in the ensuing anelastic simulations. We further
rather are designed to produce interesting vortex interactionslocument exchange and transport across the vertical domain
The initial vorticity field is comprised of columns of vorti- through the tracking of passive tracers.

ces. Each column contains same-signed vortices, with the We comment that similar processes occur in each of the
sign alternating periodically between columns. For the com€olumns, and that this flow does not produce dynamic inter-
putational domain studied in this problem, five vortices areaction between columns. It is an interesting question of in-
initialized in each column. Due to no-slip conditions at thecompressible vortex dynamics to explain the precise details
walls [initially satisfied(see Eq{(6))] through the incorpora- of this evolution. Of course, linear stability analysis may be
tion of the additional shear in the initial velocity figldike-  performed upon double arrays of point vortices. The essen-
signed vortices near the wall pair up, and propagate towartlal mechanisms may be roughly ascertained from the com-
the interior. Viscosity acts to combine these vortex pairs intgparative analysis of a single array, one with repeated same-
essentially single vortices. When these vortex blobs reach th&igned, same-strength vortices, and one with alternating-
interior, the blob above interacts with the blob bel¢and  signed, same-strength vortices. Clearly, these configurations
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are unstable, and it is the most unstable perturbations which We next discusscolumn 2 the weakly compressible
suggest the initial behavior. For a same-signed array, thisimulation involving astructureless, exponential density pro-
linear analysis suggests that neighboring vortices should pafile. First, we observe overall qualitative similarity with the
up (as in the simulation just documenjedee Saffma® For  incompressible simulation, column 1. Same-signed vortices
the alternating array, analysisee the Appendixand intu- in the respective upper and lower domains initially pair, and
ition suggests that every other vortex should pair. The linearsubsequently merge. The process continues propagating to
ized growth rates associated with these next-nearest-neighbtire interior, until the upper vortex pair meets the lower form-
pairings for the alternatingly signed array are smaller by ang a single large eddy which exchanges fluid from the upper
factor of 4 below the nearest-neighbor couplings givingand lower domains. The ordistinguishing featurdrom the
maximal growth for the same-signed array. A reasonabléencompressible simulation is ttdownward shift in the strati-
plausibility argument to explain the vortex dynamics ob-fied merger process

served in these simulations is to conjecture that the “pertur-  Column 3 documents the weakly compressible simula-
bations” associated with our simulations are more likely totion involving a structured background density transition
seed the nearest-neighbor couplings, and hence the verticédyer. Strong qualitative differences between the previous
as opposed to horizontal, vortex motion observed in théwo cases are immediately evidenced through the clear for-
simulation. Of course the calculation in the Appendix in- mation of a vortex mixing barrier. The pairing process com-
volves an infinite array, whereas the simulation involves ammences at early stages of the simulation. However, by time
array of finite length. t=5.1, a strong difference is encountered. As the vortices
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begin to enter the region of strong density transition, theanomalous in time, we explore tracer trajectories. At time
subsequent vortex merger which occurs in columns 1 and 2 2.1, we release 20000 nonbuoyant, passive particles uni-
ceasesThe vortex motion is effectively blocked, and no no- formly distributed over region[0.3,0.71X[2.5,3.9 (just
ticeable exchange of vorticity occurs on the time scale ofabove the density transitipimto the incompressible flow of
these simulations. On longer time scales, our simulationsolumn 1, and the anelastic transition layer flow of column 3.
document that ultimately the vortices will leak through this These particles are tracked, and we construct histograms for
barrier (see Fig. 9 and the discussion bejowowever, this  vertical particle distribution. Figure 7 presents these histo-
time scale is difficult to describe thus far in terms of a scalinggrams for short time, and longer time. The left column pre-
law. sents the vertical particle distributions for the incompressible
To demonstrate that this simulation actually presents asimulation, while the right column gives the analogous dis-
effective barrier to mixing, we consider the evolution of pas-tribution for the anelastic simulation. Observe: at short times
sive markers. First, in Fig. 6 we document the velocity fieldsthe distributions are similar, however at longer times, the
arising in Fig. 4 at time=4.1. The upper field corresponds effect of the anelastic blocking is strongly evidenced through
to the purely incompressible simulations, whereas the lowethe higher probability for finding particles above the density
field is that arising from the anelastic simulation with a back-transition in the anelastic simulation. Clearly, the effect of
ground transition density field. Observe the striking qualita-strong density variation is producing an effective mixing bar-
tive difference: in the weakly compressible simulation, atrier to transport in the anelastic simulation.
this output time, little fluid flows across the altitude of strong We lastly document how the sharpness of the transition
density transition. To verify that this observation is notlayer lengthens the time scale for blocking in anelastic fluid
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FIG. 6. The velocity field depicted in Fig. 89)—top panel: corresponds to
Fig. 3, column 1, whereagh)—bottom panel—corresponds to Fig. 3, col-

umn 3.

Phys. Fluids, Vol. 15, No. 10, October 2003

o

Ceygqt

e Z TN SRR Y P )
SO e ST SR

A
A e
NN O TR

e S S R T

B e e s SN SN

e o N S e S R R

1A,
4

‘o
e R
B = = R e e S L

NNCUBHPERERISHPENY

e A K N

0 0.2 0.4 0.6 0.8

YN

T N z B I
-~ 11 Iy TN N N b b S e
[ -~ nii s NVl s L s
2 MR N DR
SITITERAA NS TLLY YL
AN S A VIl dLee e
NN R I
i\‘mﬁi i : NI
RS RSB I
—eer T 't\\\\\\,,,}¢¢i, &4«*’;\‘
e A AP AANNSN— DT LY LR R
e INNNS S AR R B S R
(b)O 0.2 0.4 0.6 0.8 1
X

McLaughlin, Zhou, and Forest

corresponds to a sharper transiti@f same overall density
difference with =8, €=0.1. Observe that for times up to
t=4, the qualitative vortex dynamics are similar: blocking is
prevalent on these time scales. However, at longer times
(shown in Fig. 9, vorticity begins to leak through the barrier
for the case involving a moderate transition layer, whereas
the barrier continues to block vortex exchange for the
sharper density transition. This suggests a possible time scale
for blocking which is dependent upon the sharpness of the
density transition layer.

In closing, we further comment that length scéfer
vortices, channel domajinhas been studied and does not
greatly alter the above-mentioned resufee websit¥).

VI. FINITE PRANDTL NUMBER SIMULATIONS

Here, we present numerical simulations of the equations
in (14) for a sequence of Prandtl numbers to document that
the blocking event outlined in Sec. V arises in the limit of
small Prandtl number, thereby justifying the use of the zero-
Prandtl number equations given (h) and(2).

We begin with the behavior for the identical initial con-
ditions, and geometries utilized in Sec. V, only we have aug-
mented that system to include a density perturbation. We
utilize in all simulationsg=10, »=0.001. We begin by ex-
ploring the different behavior which occurs over a range of
Prandtl numbers, with Rr10, 1, 0.1, 0.01, using diffusivi-

flow. Figures 8 and 9 document the evolution for two differ- ties, xk=0.0001, 0.001, 0.01, 0.1. In Fig. 10, we present an
ent anelastic simulations for moderate and sharp densitgnalogous series of vorticity plots at different times as those
transition layers. The top row corresponds to a moderate demresented in Figs. 3-5, only here each column corresponds

sity transition layer with5=1, e=0.1, while the bottom row
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FIG. 7. The statistics of released pas-

5 sive scalar tracers for the simulation of
Figs. 3-5: the left column is the in-
compressible result, while the right

time = 6'34390 column is the weakly compressible re-

# of particles

sult for the structured density profile.
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Pr=10, the second, Prl, the third, P=0.1, and the fourth, VII. CONCLUSION AND DISCUSSION
Pr=0.01. The trend is clear: while cases display intriguing
vortex interactions, the behavior at small Prandtl number is We have presented numerical simulations which docu-
first notably most similar to that documented by the zero-ment a striking weakly compressible phenomersiructure
Prandtl number equations displayed in the right column ofn the steady background density profilaring high Froude
Figs. 3-5, and second, the cases with smaller Prandtl numbeumber anelastic fluid flow yields aifective mixing barrier
exhibit much stronger blocking behavior than those at highewhich strongly modifies vortex dynamics as compared with
Prandtl number. the incompressible or structureless density counterpart. In
To further exemplify this trend for stronger blocking to these simulations, blocking is evidenced through particle
emerge in the limit of small Prandtl number, in Fig. 11 we studies which exhibit thathe anelastic fluid system has re-
present particle statistics identical to those given in Fig. 7duced mixing as compared with incompressible simulations
except here, we have four columns, with Prandtl number§he time scale for this blocking is seen to grow with the
akin to those in Fig. 10. The phenomena are clear as theharpness of the density transition. We additionally isolated
Prandtl number is decreased: a clear wall to transport behis particular blocking event as emerging in the limit of
comes apparent in the simulations with the majority of thesmall Prandtl number through a sequence of computational
particles remaining in the upper half of the simulation do-simulations of the complete anelastic system with density
main. perturbation. As the Prandtl number was reduced, tracer his-
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FIG. 9. (Color) Figure 8 continued, again witb=1, 8 for the upper, lower simulations, respectively.

tograms indicate a transport barrier. Consequently, this offerderstanding of the energetic scales associated with conden-
strong support for utilizing the zero-Prandlt numbé@w  sation and other phase change phenomena. Certainly, such
gravity) equations developed here, especially for flows in-phenomena are crucial to moist atmospheric convection,
volving such vortex interactions, for fluids with small Prandtl nonetheless, the present study does suggest that at least for
(or equivalently large Froudenumber. Therefore, it seems dry convection non-Boussinesq effects such as those embod-
natural that this blocking mechanism may be relevant to anyed within the nontrivial anelastic mass constraint yield in-
exchange problem involving a strongly stratified fluid. teresting behavior associated with transport and mixing. Fur-
Clearly, many issues need to be explored. The developmetiter, should such non-Boussinesq effects be consistently
of an anelastic vortex method could offer insight into thedeveloped into closure models for driven turbulence in the
nonlinear mechanisms responsible for this mixing barrierpresence of strong density transition? Clearly, buoyancy ef-
Work in progress has been successful in explaining certaifects are important in the consideration of such closures, but
aspects of this evolution in limiting cases, however, it iscare should be taken. Typical Richardson dependent closures
necessary to handle a variable coefficient Green’s function toften extinguish mixing coefficients for large Richardson
generalize the vortex methtt®to arbitrary anelastic flow. number??2 While such closures have proven effective in
Numerous additional issues demand consideration. Pesome circumstances, the work of Majda and Shefter has
haps most important is a further careful assessment and udemonstrated situations in which instability persists at arbi-
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trarily large Richardson numbét,suggesting the need for R.M.M. wishes to acknowledge N. O. Renno for numerous
modified closures. Certainly, for strong density transition,discussions regarding effects of weak compressibility. H.Z.
mixing should be carefully assessed as penetrative motiothanks M. Minion for helpful discussions with the numerical
will experience dramatic increase in potential energy whichmethod. All the authors thank two anonymous reviewers for
could potentially drive smaller scale mixing upon relaxation.their comments and suggestions which have led to a much
The studies presented here, while idealized, do suggest thimhproved study.

mixing mechanisms may be strongly modified through

weakly compressible effects, and a complete mathematical

theory for small scale stratified mixing may require the con-APPENDIX: STABILITY OF ALTERNATING PERIODIC
sideration of such non-Boussinesq effects. ARRAYS

The stability of an infinite row of vortices of equal
strength has been discussed in Lafdnd Saffmart® It is
M.G.F. and H.Z. are supported by the Air Force Office offound that the pairing instability is most unstable for an in-
Scientific Research F49620-99-1-0003, and National Sciendinite row of vortices of equal strength.
Foundation(NSF) Grant No. DMS-9704549, R.M.M. is sup- In this appendix we consider an infinite row of vortices
ported through NSF Career Grant No. DMS-970192420f alternating strength. The equilibrium configuration con-
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sists of vortices of strength(1)T" at the pointsx=kh, y
=0 (k=—,...,—1,0,1,..9).
Now disturb the row

hj
Xj: 0 +6yjy (Al)
wheree<l, j=—x,...,—1,0,1,..50. Then
dx; I' (X — X
st FZ k( j k)' (AZ)
dt KF1 | — X2
where
. 0 -1
r==n% IJ= 1 0l (A3)
The linearized equation is
dy; T — 1)Ky, —
j:7 ( )(yj yk), (A4)
dt h? & (j-K?
where
0 —1)
=i o) (A5)

This stability problem may be analyzed most simply

through Fourier analysis. To this end, let

f(x,t>=2k e 2mkxy, (1), (AB)

Note thatf(x,t) is periodic with respect ta with period 1
andy,(t) is given by

1 )
yk(t)=f ek (x t)dx. (A7)
0
We further introduce
fo(x,t) =2 e 2m @y, (1), (A8)
k

fi(x,t)= Ek) e 2m(KFhxy, (1),

It is clear that

f(x, 1) =fo(X, ) +F1(X,1).

It can be shown that

fo(x,t) =

fl(X,t) =

f(x,t)+f(x+3,t)

2 ,

f(x,t) —f(x+%,t)

2

It further can be shown that

1)|(l_e2ﬂ'i|X)

g(x)=>, (
1#0

|2

(A9)

(A10)

(A1)

(A12)

(A13)

is the continuous periodic extension @fx)=—2m°x? on
[—3.3]. A plot of g(x) is shown in Fig. 12.

Define

FIG. 12. The plot ofg(x).

Downloaded 27 Oct 2003 to 128.114.50.39. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



Phys. Fluids, Vol. 15, No. 10, October 2003

fa=fo—f;. (Al4)
Then it may be established frofA4) that

(7—f3= £Hf(x,t)g(x). (A15)

gt Rp2
Using (A11) and(Al12), one has

fa=fo—f1=f(x+3,1). (Al6)
From (A15), one then has

H(x+3t) T

——— = —g(X)Hf(x,t). (A17)

Y]

Since(Al7) is true for anyx and recall from(A6) that f(x)
is periodic with period 1, we have

o(xt) af(x+1p) T 1 » 1
ot R/t
(A18)
Hence
f(x,t) 1
0 —
%f +1t) _52 2l
X _!
271 "lgon 0
f(x,t)
1
X g X+ 5.t (A19)
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